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I. PROOF OF THEORETICAL RESULTS

A. Proof of Proposition I

Theorem 1. (Game Generalized Policy Improvement) Let
Π1,Π2, ...Πn be n decision policies and let Q̃Π1 , Q̃Π2 , ...Q̃Πn

be approximates of their respective action value function such
that

|QΠi(s, a, b)− Q̃Πi(s, a, b)| ≤ ϵ

for all s ∈ S, a ∈ A, b ∈ B and i ∈ {1, 2, ...n}.

Define

π(s) ∈ argmax
a

min
b

min
i

Q̃Πi(s, a, b)

We start with the assumptions necessary for this learning
algorithm to satisfy the conditions of Theorem 1 in [1]
and therefore converge to optimal Q values. The dynamic
programming operator defining the optimal Q function is.
Proof. Simplifying the notation, let

Qmin(s, a, b) = miniQ
Πi(s, a, b) and

Q̃min(s, a, b) = min
i

Q̃Πi(s, a, b)

We start by noting that for any s ∈ S and any a ∈ A and any
b ∈ B the following holds:

|Qmin(s, a, b)− Q̃min(s, a, b)| = |min
i

QΠi(s, a, b)−

min
i

Q̃Πi(s, a, b)| = min
i

|QΠi(s, a, b)− Q̃Πi(s, a, b)| ≤ ϵ

This property should remain at a minimum as well as a
maximum.

For all s ∈ S and a ∈ A and i ∈ 1, 2, we have

TΠQ̃min(s, a, b) = r(s, a, b) +
∑
s

p(s′|s, a, b)Q̃min(s
′,Π(s′))

= r(s, a, b) +
∑
s

p(s′|s, a, b)max
a

min
b

Q̃min(s
′, a, b)

≥ r(s, a, b) +
∑
s

p(s′|s, a, b)max
a

min
b

Qmin(s
′, a, b)− γϵ

this is property of Bellman Operator

≥ r(s, a, b) +
∑
s

p(s′|s, a, b)Qmin(s
′,Πi(s

′))− γϵ

≥ r(s, a, b) +
∑
s

p(s′|s, a, b)QΠi(s′, πi(s
′))− γϵ

= TΠiQΠi(s, a, b)− γϵ

= QΠi(s, a, b)− γϵ

Since TΠQ̃min(s, a, b) ≥ QΠ
i (s, a, b)− γϵ for any i task, it

must be the case that

TΠQ̃min(s, a, b) ≥ min
i

QΠi(s, a)− γϵ

= Qmin(s, a)− γϵ

≥ Q̃min − ϵ− γϵ

The Bellman operator in reinforcement learning is said to
have two key properties: monotonicity and contraction.

Monotonicity:

Definition: A mapping T is said to be monotonic if, for
any two functions V1 and V2 such that V1 ≤ V2, pointwise, it
follows that TV1 ≤ TV2 pointwise.
In the context of the Bellman operator: If Q1 ≤ Q2 pointwise
(meaning Q1(s, a) ≤ Q2(s, a) for all s and a), then it implies
that TQ1 ≤ TQ2. In other words, improving the estimate of
the Q-values for state-action pairs will result in an improved
estimate after applying the Bellman operator.

Contraction (or contraction mapping) property:
Definition: A mapping T is a contraction if there exists a

constant 0 ≤ γ < 1 such that, for all functions V1 and V2, it
follows that ||TV1 − TV2|| ≤ γ||V1 − V2|| where||.|| denotes
some norm.

In the context of the Bellman operator: If T is a contraction,
applying the Bellman operator to two different Q-value func-
tions results in Q-value functions that are closer together. This
property is particularly useful in iterative algorithms because
it guarantees convergence to a unique fixed point.

In summary, the monotonicity property ensures that im-
provements in the Q-value estimates lead to improvements af-
ter applying the Bellman operator, and the contraction property
guarantees the convergence of iterative methods to a unique
solution.

These properties are crucial in the analysis of reinforcement
learning algorithms, especially those based on iterative meth-
ods like value iteration or Q-learning. They provide theoretical
guarantees on the convergence of the algorithms and the
consistency of the estimated values.

Now we look into the fixed point theorem: Simplifying the
Bellman operator under the assumptions of a deterministic
policy and a constant function e(s, a) = 1 for all s,a.

Starting with the Bellman operator:

TπQ(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′)+γ
∑
a′

π(a′|s′)Q(s′, a′)].

(1)
Assumptions: π(a′|s′) = 1 (deterministic policy)
e(s, a) = 1 for all s,a

Now, let’s apply these assumptions to simplify the Bellman
operator:

Tπ(Q̃min(s, a) + ce(s, a)) =
∑
s′

P (s′|s, a)[R(s, a, s′)+

γ
∑
a′

π(a′|s′)(Q̃min(s
′, a′) + ce)].

Given the deterministic policy, π(a′|s′) = 1, so the summation
over a’ simplifies:

=
∑
s′

P (s′|s, a)[R(s, a, s′) + γ(Q̃min(s
′, a′) + ce)]. (2)

Now, since e(s, a) = 1 for all s,a, the term ce(s, a) becomes
c, and we have:

=
∑
s′

P (s′|s, a)[R(s, a, s′) + γ(Q̃min(s
′, a′) + c)]. (3)

Expanding the sum over s’ and using the fact that P (s′|s, a)
is a probability distribution and considering the fact that
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π(a′|s′) = 1 implies that there is only one relevant a’ for
each s’, we can simplify further:

= R(s, a, s′) + γ(Q̃min(s
′, a′, ) + c)] (4)

Finally, the expression becomes:

= Q̃min(s, a) + γc (5)

Now, we look into how the property can be used for multi-
agent settings, if the policy is deterministic the above property
holds:

Now we want to prove that:
First and foremost:

QΠ(s, a, b) = lim
k→∞

(Tπ)kQ̃min(s, a, b)

= limk+1→∞(Tπ)k+1TπQ̃min(s, a, b)

≥ limk+1→∞(Tπ)k(Q̃min(s, a, b)− ϵ(1 + γ))

= limk+2→∞(Tπ)kTπ(Q̃min(s, a, b)− ϵ(1 + γ))

= limk+2→∞(Tπ)k(Q̃min(s, a, b)− γϵ(1 + γ))

≥ Q̃min − ϵ
1 + γ

1− γ
: geometric expansion if γ ≤ 1

= Qmin(s, a, b)− ϵ− ϵ
1 + γ

1− γ

Proof: the result is a direct application of the theorem 1 and
Lemma 1. For any j

B. Proof of Lemma 1

Lemma 1.: Let δij = maxs,a,b|ri(s, a, b)− rj(s, a, b)| and
let Π be an arbitrary policy. Then,

|QΠ
i (s, a, b)−QΠ

j (s, a, b)| ≤
δij

1− γ

Proof. Let us simplify the notation, now let Qj
i (s, a, b) =

Q
Π∗

j

i (s, a, b). Then,

Qi
i(s, a, b)−Qj

i (s, a, b) = Qi
i(s, a, b)−Qj

j(s, a, b)+

Qj
j(s, a, b)−Qj

i (s, a, b) ≤
|Qi

i(s, a, b)−Qj
j(s, a, b)|+ |Qj

j(s, a, b)−Qj
i (s, a, b)|

Our strategy will be to bound |Qi
i(s, a, b) − Qj

j(s, a, b)| and
|Qj

j(s, a, b)−Qj
i (s, a, b)| Note that |Qi

i(s, a, b)−Qj
j(s, a, b)|

is the difference between the value functions of two Markov
Games with the same transition function but potentially dif-
ferent rewards.

Define ∆ij = maxs,a,b|Qi
i(s, a, b)−Qj

j(s, a, b)|. Then,

|Qi
i(s, a, b)−Qj

j(s, a, b)|

= |ri(s, a, b) +
∑
s′

p(s′ | s, a, b)max
a′∈A

min
b′∈B

QΠ
i (s

′, a′, b′)

− rj(s, a, b)−
∑
s′

p(s′ | s, a, b)max
a′∈A

min
b′∈B

QΠ
j (s

′, a′, b′)|

= |ri(s, a, b)− rj(s, a, b) +
∑
s′

p(s′ | s, a, b)
(
max
a′∈A

min
b′∈B

QΠ
i (s

′, a′, b′)

−max
a′∈A

min
b′∈B

QΠ
j (s

′, a′, b′)
)
|

≤ |ri(s, a, b)− rj(s, a, b)|+
∑
s′

p(s′ | s, a, b)|max
a′∈A

min
b′∈B

QΠ
i (s

′, a′, b′)

−max
a′∈A

min
b′∈B

QΠ
j (s

′, a′, b′)|

≤ δij +∆ij .

We now turn our attention to |Qj
j(s, a, b)−Qj

i (s, a, b)|. Fol-
lowing the previous step: define ∆′

ij = maxs,a,b|Qj
j(s, a, b)−

Qj
i (s, a, b)|. Then,

|Qj
j(s, a, b)−Qj

i (s, a, b)|

=

∣∣∣∣∣rj(s, a, b) + γ
∑
s′

p(s′ | s, a, b)Qj
j(s

′,Π∗
j (s

′))

−ri(s, a, b)− γ
∑
s′

p(s′ | s, a, b)Qj
i (s

′,Π∗
j (s

′))

∣∣∣∣∣
= |ri(s, a, b)− rj(s, a, b)

+γ
∑
s′

p(s′ | s, a, b)
(
Qj

j(s
′,Π∗

j (s
′))−Qj

i (s
′,Π∗

j (s
′))

)∣∣∣∣∣
≤ |ri(s, a, b)− rj(s, a, b)|

+ γ
∑
s′

p(s′ | s, a, b)|Qj
j(s

′,Π∗
j (s

′))−Qj
i (s

′,Π∗
j (s

′))|

≤ δij +∆′
ij .

Solving for the ∆′
ij , you get

∆′
ij ≤

δij
1− γ

(6)

Now for the desired result:

Qi
i(s, a, b)−Qj

i (s, a, b) ≤ |Qi
i(s, a, b)−Qj

j(s, a, b)|+

|Qj
j(s, a, b)−Qj

i (s, a, b)| ≤
2δij
1− γ
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Proposition 1. Let Mi ∈ Mϕ and let Q
Π∗

j

i be the value
function of an optimal policy of Mj ∈ Mϕ when executed in
Mi. Given the set {Q̃Π∗

1
i , Q̃

Π∗
2

i , ...Q̃
Π∗

n
i } such that

|QΠ∗
j

i (s, a, b)− Q̃
Π∗

j

i (s, a, b)| ≤ ϵ for all s ∈ S,

a ∈ A and j ∈ 1, 2, ...n,

let,

π(s) ∈ argmax
a

min
b

min
j

Q̃
Πj

i (s, a, b)

Then,

Q∗
i (s, a, b)−QΠ

i (s, a)

≤ 2

1− γ
max
s,a,b

|ri(s, a, b)− rj(s, a, b)|+
2

1− γ
ϵ

Proof, The result is a direct application of Theorem 1 and
Lemmas 1 and 2. For any j ∈ {1, 2, ...n}, we have.

Q∗
i (s, a, b)−QΠ

i (s, a)

≤ Q∗
i (s, a, b)−Qj

i (s, a) +
2

1− γ
ϵ Theorem 1

≤ 2

1− γ
δij +

2

1− γ
ϵ Lemma 1

=
2

1− γ
max
s,a,b

|ri(s, a, b)− rj(s, a, b)|+
2

1− γ
ϵ

C. Implementation Details
In this section we describe in detail of the environmental

setup and training details of our empirical studies. Pursuer
Evader is a standard experiment for zero sum game, we
adopted the hyperparameters used in the [2]. We also intro-
duced a challenging task in the Pursuer Evader game which
has different initial conditions and more possible goals.

1) Pursuer Evader Qualitative Test: : In Section 5 of the
paper we gave an intuitive description of the pursuer evader
game used in our experiments. In this section we provide
more information on the pursuer evader game and possible
output for reach agent. As seen in Fig: 1, there are total of 9
combination of initial position for the agents to move towards
the goal and the the exit number infront of each door is the
tasks.

Because of the increase in the number of the doors, the
new task is described by weights, the length of weights differs
from 8 to 10. Hence , like in Case study 1, the task is given
by. [0.7,−1.3, 0.7, 0, 0, 0, 0, 0, 0] where the first weight is for
manhattan distance between the agents, the next two parameter
for the Task 1 ( the weight for distance from evader to goal
and the weight of terminal reward for evader), after that the
subsequent two are for the next task in the increasing order.

2) Algorithms: As mentioned in the Section 4 of the paper,
we have both agents updating their TD error at the same time.
Figure 2 shows a time scale of how both agents use a one
step horizon look out for the other agent’s action and choose
to maximize based on the current reward.

This has been implemented for all the algorithms where
both agents are able to have a one step look ahead into the
opponent’s policy.

Fig. 1. All the initial position and goal for the quantitative test.

Fig. 2. Asynchronous q table update with one step look out horizon for both
agents.
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